1. Zhao L, Zhu H* Big data in computational toxicology: challenges and opportunities. In: Computational toxicology – Risk assessment for chemicals (by Ekins S Editor). Chapter 11, page 293-312, John Wiley & Sons, Inc., 2018, Hoboken, NJ 07030, USA, ISBN: 9781119282570.
  2. Golbraikh A, Wang X S, Zhu H, Tropsha A Predictive QSAR modeling: Methods and applications in drug discovery and chemical risk assessment. In: Handbook of computational chemistry (by Leszczynski, J. et. al. Editor). Chapter 57, 2303-2340, Springer-Verlag, 2017, GmbH Berlin Heidelberg, ISBN: 978-3-319-27281-8.
  3. Zhu, H.*, Kim, M., Zhang, L., and Sedykh, A. Computers Instead of Cells: Computational Modeling of Chemical Toxicity. In: Reducing, Refining and Replacing the Use of Animals in Toxicity Testing (by Allen D.; Waters M. D. Editor). Chapter 5, page 163-182, Royal Society of Chemistry, 2013, Burlington House, Piccadilly, London, ISBN: 978-1-84973-652-7.
  4. Zhu, H.* From QSAR to QSIIR: Searching for Enhanced Computational Toxicology Models. In: Computational Toxicology Volume II (by Reisfeld, B.; Mayeno, Ar N. Editor). Chapter 3, Springer-Verlag, 2012, GmbH Berlin Heidelberg, ISBN 978-1-62703-058-8.
  5. Golbraikh, A.; Wang, X. S.; Zhu, H.; Tropsha, A.* Predictive QSAR modeling: Methods and applications in drug discovery and chemical risk assessment. In: Handbook of Computational Chemistry (by Leszczynski, J. Editor). Chapter 37, 1309-1342, Springer-Verlag, 2011, GmbH Berlin Heidelberg, ISBN: 978-94-007-0710-8.

*indicates the corresponding author.